

G_sα and G-coupled receptor linked diseases: FIBROUS DYSPLASIA

Students:

Professor:

Isabella Saggio

Maria Vittoria Mazzuoli Giulia Montuori Myselis Santiago-Reyes Ilenia Puglia Letizia Vestito

Tutor:

Mattia La Torre

HUMAN FIBROUS DYSPLASIA (hFD)

General features

Skeletal involment may be:

Limited to one bone (monostotic FD): 75%

Extended to multiple bones

(polyostotic) or the entire skeleton (panostotic): 25%

Range:

1/100'000 or 1/1'000'000

 in 60% of cases the symptoms occurs before 10 years of age

Symptomatology

Skeletal

• Pain

Fracture

Deformity

Extraskeletal

- Precocious puberty
- Endocrine problems

A G_Sα-LINKED DISEASE

$G_s \alpha$ physiological pathway

- Stimulatory G-protein α subunit has a GTPase domain
- Activated G_sα binds GTP and activates
 Adenylyl Cyclase
- [cAMP] increase and the PKA pathway is launched
- G_sα hydrolyze GTP to GDP and reunites to the βγ subunit

$G_s \alpha$ in fibrous dysplasia

 The GTPase domain undergoes an amminoacidic replacement due to a missense mutation.

The mutant form of G_sα remains constitutively active leading to cAMP overproduction.

FD: GENOTYPIC FEATURES

FD IS A DISEASE OF SKELETAL STEM CELLS

LV-EF1α-Gsα^{R201C} STRAIN: A DIRECT REPLICA OF hFD BONE PATHOLOGY

STRATEGY

We invented a brand new construct (GLIMM) based on RNAi strategy delivered by an AAV vector in BMSCs. It is set up on GW182 decay pathway against mutated mRNA

CONSEQUENCES:

- Restore physiological [cAMP]
- Promote osteoblasts differentiation

Slowing down FD progression

HOW DOES GLIMM WORKS?

GW 182: A P-BODY MARKER IN METAZOANS

- RRM: RNA recognition motif
- GW: glycine and tryptophan repeats
- I and II: conserved motifs

RECOMBINANT AAV VECTOR (rAAV)

rAAV vector production

Why rAAV?

- Long-term gene expression of the delivered transgene
 - No immunogenicity
 - High titers (10e¹⁰)

The Ad-helper plasmid assembling E2A, E4 and VA regions (A**d-helper plasmid**) is cotrasfected into the 293 cells, along with plasmids encoding the AAV vector genome (**vector plasmid**) as well as rep and cap genes (**AAV-helper plasmid**)

Our rAAV expression cassette

EXPERIMENTAL PLAN

IN VITRO EXPERIMENTS – IN TUBE

Does the construct work?

Luciferase activity

IN VITRO EXPERIMENTS – BMSCs

- The cells were inoculated on a 6-well plate at 1 x 10⁴ cells/well
- Collection after 12, 24, 48, 72 and 96h
- FLAG-GW182 Immunoblot to evaluate GLIMM expression on transduced cells

Is GLIMM toxic to BMSCs?

MTT – VIABILITY ASSAY

DIFFERENTIATION ANALYSIS

Analysis of bone cell-specific marker like **Alkaline Phosphatase (AP)** or detection of **fuctional mineralization** is frequently used to evaluate osteoblasts health condition *in vitro*

CELLS PROLIFERATION

Thymidine incorporation assay

Osteoblast mineralization

1 D 7 D 14 D

After treatment with rAAV-GLIMM, BMSCs are more differentiated and less proliferating

&

MICROARRAY ANALYSIS

Gene exspression profile of mouse BMSCs was already determined by cDNA microarray analysis.

BMSCs^{R201C}

BMSCs^{R201C} MS2/GW182

GW182 OVEREXPRESSION IN BMSCs DOES NOT AFFECT OTHER CELLULAR PATHWAYS

> GENE EXPRESSION IS RESTORED AFTER TRANSDUCTION

MORPHOLOGICAL ANALYSIS

Adapted from Piersanti, et al. (2009)

Restoration of in vitro mineralization in BMSCs, first trasduced with GLIMM

IN VIVO EXPERIMENTS

TaqMan: SNP qRT-PCR

Mut TaqMan probe

RADIOGRAPHIC AND HYSTOLOGICAL ANALYSIS

PITFALLS AND SOLUTIONS

MAT€RIALS AND CO\$TS

Materials and assays	Product	Cost	Web page
cAMP assay	cAMP-Glo™ assay (300 assays)	299,00€	https://www.promega.com
Cells	AAV-293 cells	266,00€	http://www.genomics.agilent.com
Vector	VectorpAAV-IRES- hrREPORTERVector	381,00€	http://www.genomics.agilent.com
MTT assay: Viability assay	Vybrant [®] MTT Cell Proliferation Assay Kit (1000 assays)	285,00€	https://www.lifetechnologies.com/
Luciferase assay	Luciferase Assay System	150,00 €	https://ita.promega.com
Differentiation analysis	Osteoblast differentiation and mineralization	Contact vendor	http://www.promocell.com
Animal model	LV-EF1a-Gsa ^{R201C} mouse (x25)	Contact vendor	
Microarray analysis	GeneChip [®] Mouse Genome 430 2.0 Array	Contact vendor	http://www. http:// www.affymetrix.com
SNP RT-qPCR analysis	TaqMan [®] based SNP genotyping technology	278,00€	http://www.lifetechnologies.com
Cell proiferation assay	Thymidine Incorporation Assay	Contact vendor	http://www.lifetechnologies.com
Alkaline Phosphatase detection assay	Alkaline Phosphatase Activity Assay, 500 tests	\$307.00	http://www.sciencellonline.com
Osteoblast mineralization	OsteoImage™ Bone Mineralization Assay	Contact distributor	http://www.lonza.com
GW182 Immunoblot	ANTI-FLAG Polyclonal	368,00 €	http://www.piercenet.com/

REFERENCES

Fibrous Dysplasia as a Stem Cell Disease

M. Riminucci, I. Saggio, P. Gehron Robey and P. Bianco. Journal of Bone and Mineral Research Volume 21, Supplement 2, (2006)

Gs Alfa Mutations in Fibrous Dysplasia and McCune-Albright Syndrome

L.S. Weinstein . Journal of Bone and Mineral Research Volume 21, Supplement 2, (2006)

Constitutive Expression of GsaR201C in Mice Produces a Heritable, Direct Replica of Human Fibrous Dysplasia Bone Pathology and Demonstrates Its Natural History.

I. Saggio, C.Remoli, E. Spica, S.Cersosimo, B.Sacchetti, P.G. Robey, K. Holmbeck, A. Cumano, A.Boyde, P. Bianco, and M. Riminucci. *Journal of Bone and Mineral Research*, Vol. 29, No. 11, November (2014), pp 2357–2368

Sviluppo di terapie cellulari per la Displasia Fibrosa dello scheletro

A. Greco - Tesi di dottorato

Argonaute 2/RISC redides in sites of mammalian mRNA decay know as cytoplasmic bodies

G.L. Sen & H. M. Blau, Nature Cell Biology 7, 633 - 636 (2005)

Recombinant adeno-associated virus BMP-4/7 fusion gene confers ossification activity in rabbit bone marrow stromal cells

S.H. Yuan, C.B. Gao, C.U. Yin, Z.G. Yin; *Genetics and Molecular Research* 11 (3): 3105-3114 (2012)

Bone marrow stromal-derived soluble factors and direct cell contact contribute to *de novo* drug resistance of myeloma cells by distinct mechanisms

Y. Nefedova et al. Leukemia (2003) 17, 1175–1182. d

Gene expression profile of mouse bone marrow stromal cells determined by cDNA microarray analysis

George Wieczorek, et al., Cell and Tissue research, February (2003), Volume 311, Issue 2, pp 227-237

Transfer, analysis, and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors

S. Piersanti, C. Remoli, I. Saggio, A. Funari, S. Michienzi, B. Sacchetti, P.G. Robey, M. Riminucci and P. Bianco; JBMR

Improving clinical efficacy of adeno associated vectors by rational capsid bioengineering

D.Sen; Sen Journal of Biomedical Science 2014, 21:103

Efficient Transduction of Bone Marrow-Derived Mesenchymal Stem Cells for Cancer Gene Therapy Using a Tropism-Modified Adeno-Associated Virus (AAV) Vector

B.M. Hall, A.E.. Henning, and Jeffrey S. Bartlett[;] *Molecular Therapy* (2004) **9**, S372–S373.