Diabetes and Gene Editing

Cell based therapy for single mutation induced diabetes

GENE THERAPY COURSE – ISABELLA SAGGIO 2015-2016

Veronica Lisi, Rosamaria Lugarà, Dominico Liguoro, Robin Loesch

Monogenic Diabetes : Two types ⁽¹⁾

- Monogenic forms of pancreatic β-cell dysfunction include maturity-onset diabetes of the young (MODY) and neonatal diabetes.
- MODY is the most common form of inherited diabetes (constitutes 1-5% of all cases of diabetes in industrialized countries)

Symptoms and Features :

MODY

- High blood glucose, polyuria, polydipsia, fatigue
- Diagnosed with diabetes under the age of 25
- Parent with diabetes plus in two or more generations
- Not necessarily needing insulin.
- HNF1-alpha gene causes about 56 % of cases
- INS mutated in 4% of the cases

NEONATAL

- High blood glucose, polyuria, polydipsia
- Diagnosed with under the age of 6 months
- Possible development delay
- Rare
- Transient of permanent
- 50 % of people do not need insulin
- INS mutated in 16% of permanent neonatal diabetes

Our model : The MODY Mouse ⁽²⁻³⁾

- C57BL/6 *Ins2^{Akita}*/J Mouse
- Mutation on chromosome 7 in insulin 2 (Ins2) coding gene.
- Single point mutation :

- The mouse autosomal dominant mutation *Mody* develops hyperglycemia with notable pancreatic β -cell dysfunction.
- The mouse develop also, hypoinsulinemia, polydipsia, and polyuria with no obesity and insulitis.

Generation of fibroblast derived iPS cells

 Ectopic expression of Yamanaka's factors Myc, Oct4, Klf4, Sox2 in MODY mouse fibroblasts AND WT <u>C57BL/6J</u> mouse.

- Colony with stable karyotype
- Test for plurypotency markers, including Nanog Oct 3/4, TRA-1-60 and SSEA-5.

 Teratoma assay to test pluripotency
MODY - FiPS
Histological Examination

Integration free clones assessment using qPCR.

* chose on Addgene for their Non-integrating and mammalian expression of mouse genes.

CRISPR/Cas9 mediated engineering ⁽⁵⁾

- The RNA guided nuclease Cas9 allows sequence specific double strand breaks.
- DNA repair via homology directed repair (HDR) permit genome editing.
- Require a Protospacer Adjacent Motif (PAM) sequence 5'-NGG-3' in the genome.
- Requires a DNA template sequence for HDR.
- Proved efficient in mouse iPSC and hiPSC⁽⁴⁾

* Ins2 gene sequence obtained on NCBI website (Reference Sequence: NC_000073.6 : C57BL/6J chromosome 7, GRCm38.p3)

CRISPR machinery and Template delivery

• Use of the pSpCas9(BB)-2A-GFP (Addgene) recently and successfully used for knockout mESC generation ⁽⁷⁾

* WT FiPS cell were treated the same way but without plasmids and templates.

* The selected clone are called MODY FiSC cells for fibroblasts Induced Stem Corrected cells

* WT FiPS cell were treated the same way and called WT FiPSC- β Cells .

- Expression of insulin 1 and 2 in MODY FiPSC-β Cells and WT iPC-β Cells albeit at a lower level compared to WT β Cells.
- The MODY iPSC differentiated Beta cells are sensitive to glucose concentration.

<u>Same experiment in parallel but injecting WT FiPS- *βCell treated the same way but without correction.*</u>

MODY iPSC derived β-cell regulates the glycemia after liver and kidney injection as well as WT iPS derived Beta cells.

In Vivo Results

The mice show higher circulating insulin after transplantation compared to non treated albeit at a 10 times lower level than wildtype.

Kidney injected with MODY FiPSC- β cells

Liver injected with MODY FiPSC- β cells

Expression of insulin and C-peptide in the kidney and in the liver. (H&E, diaminobenzidine ⁽⁸⁾).

<u>Same experiment in parallel but injecting WT FiPS- *βCell treated the same way but without correction.*</u>

Discussion

- Gene editing possible in hiPSC ⁽⁴⁾
- Knockin & Knockout doable and reported for other diseases ⁽⁴⁾
- Feasible on other forms of MODY and neonatal diabetes
- Potentially useful for other illness like monogenic liver diseases
- Potential long term efficiency

- Improve Crispr safety using bioinformatics tools (Looking for unique sgRNA sequence) ⁽⁴⁾
- Challenges still remains for human β cell differentiation. ⁽¹⁰⁾
- Production of a larger amount of cells than for the mouse model
- Long term safety at a human scale Use of a suicide genes before transplantation ?

Cost and Time

PhD Project (4 years) ~ 50 000\$

- MODY Mice + WT mice + Stabulation ~ 199\$ x 5 males + 25\$ x 5 WT females.
- Stabulation for the mice ~ 500\$ / months.
- Expression vectors (Addgene) : pCX-cMYC + CX-OKS-2A : 130 \$
- CRISPR Vector (Addgene) : pSpCas9(BB)-2A-GFP (PX458) : 65 \$
- Ultramer Oligonucleotide (IDT): 78 172 \$
- Exome sequencing : 800 -1200 \$ times the number of clones tested.
- Multiple control sequencing : ~ 2000\$
- FACS antibodies : 8 x 200-300 \$ + respective isotype controls .
- Immunohistochemistry antobidies : 200-300\$ x Antibodies + secondary antibodies
- Ultra sensitive mouse Insulin ELISA kit (biorbyt): 580 \$ / plates
- Non evaluable costs includes routine lab experiments and trouble shootings.

References

- 1 www.diabetes.org.uk
- 2 Mathews CE; Langley SH; Leiter EH. 2002. New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 73(8):1333-6
- 3 Wang J; Takeuci T; Tanaka S; Kubo SK; Kayo T; Lu D; Takata K; Koizumi A; Izumi T. 1999. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest 103(1):27-37.
- 4 Hongmei Lisa Li, Naoko Fujimoto, Noriko Sasakawa, et al. Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9, Stem Cell Reports, Volume 4, Issue 1, 13 January 2015, Pages 143-154, ISSN 2213-6711
- 5 F Ann Ran, Patrick D Hsu, Jason Wright et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013 November ; 8(11): 2281–2308. doi:10.1038/nprot.2013.143.
- 6 http://www.broadinstitute.org/rnai/public/analysis-tools/sgrnadesign
- 7 Wettstein R, Bodak M, Ciaudo C. Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool. Methods Mol Biol. 2016;1341:321-43. doi: 10.1007/7651_2015_213.

8 -Kilsoo Jeon, Hyejin Lim, Jung-Hyun Kim et al. Differentiation and Transplantation of Functional Pancreatic Beta Cells Generated from Induced Pluripotent Stem Cells Derived from a Type 1 Diabetes Mouse Model STEM CELLS AND DEVELOPMENT Volume 21, Number 14, 2012 DOI: 10.1089/scd.2011.0665

- 9 Young Tae Heo, Xiaoyuan Quan, Yong Nan Xu et al. CRISPR/Cas9 Nuclease-Mediated Gene Knock-In in Bovine-Induced Pluripotent Cells. STEM CELLS AND DEVELOPMENT · SEPTEMBER 2014 DOI: 10.1089/scd.2014.0278
- 10 Nina Quiskamp, Jennifer E. Bruin, Timothy J. Kieffer, Differentiation of human pluripotent stem cells into β-cells: Potential and challenges, Best Practice & Research Clinical Endocrinology & Metabolism, Available online 30 October 2015, ISSN 1521-690X
- 11 Takuya Sugiyama, Ryan T. Rodriguez, Graeme W. McLean Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci U S A. 2007 Jan 2; 104(1): 175–180