LMNA-related Dilated

Cardiomyopathy therapy:

Silencing LMNA mRNA and restoring

wild type lamin proteins

Gene Therapy
Prof. I. Saggio
2018/2019
Adragna Cecilia, Anelli Valerio, D'Avack Gloria, Rodríguez Huerres Candela

The disease

LMNA-related dilated cardiomyopathy

LMNA-related dilated cardiomyopathy

\rightarrow Autosomal dominant disorder
$\rightarrow \mathbf{6 - 8 \%}$ of DCM cases in humans
\rightarrow Symptoms between $\mathbf{2 0}$ and $\mathbf{6 0}$ years old

NORMAL HEART

DILATED HEART

[^0]
LMNA-related dilated cardiomyopathy

Figure adapted from "Captur et al., 2017". ${ }^{4}$

Objectives
 and strategy

Our goals and what we are going to do

GOALS

Blocking the expression of mutated LMNA gene

STRATEGY

Stable and long-term expression of Antisense Oligonucleotide (ASO) through liposome infection

Restoring the WT phenotype of lamin proteins A and C

Assess the lentiviral specificity for cardiomyocytes

Designing circRNA constructs encoding for the WT lamin proteins delivered through lentivectors

Lentiviral vector with a specific promoter against the cardiomyocytes

Delivery systems

 RNAiMAX ${ }^{\text {TM }}$ Reagent GapmeR ASO delivery and$3^{\text {rd }}$ generation lentiviral vectors mediated circRNA delivery

Delivering GapmeR ASO with liposomes

Figure adapted from "Molecular Medicine, 2003"

Silencing pre-mRNA with GapmeR ASO

$3^{\text {rd }}$ generation lentiviral vectors

Regulation

Figure adapted from ABMGOOD

Circular RNA

Intermediates

Products

Figure adapted from "Wesselhoeft et al., 2018"

Lentivectors production

Transfect HEK293 Cells

Figure adapted from ALSTEM

Testing the therapy

Organism model \rightarrow H222P Mouse model

(Arimura et al., 2004)

In vitro experiment- Part 1

GapmeR ASO-Liposome transfection for silencing the endogenous LMNA gene expression.

Figure adapted from "Pendergraff et al., 2017"

In vitro experiment- Part 2

circRNA delivery with lentivectors into cardiomyocytes from H222P

GFP expression

In vivo experiment

Lmna ${ }^{\text {H222P/H222P }}$ neonatal mice transfection

Day 5

Day 35

In vivo experiment

Results

GFP expression

RT-PCR

Normal si-LMNA
pre-mRNA LMNA

GADPH

Figures adapted from "Frock et al., 2012"

Pitfalls and solutions

Pitfalls

Solutions

1. Low expression of circRNAs and GapmeR ASO
2. Low regenerative power of cardiomyocytes 1. Embryonic cells therapy
3. Liposomal specificity for cardiomyocytes and cytotoxicity
4. Crispr/Cas9 lentiviral delivery system to knock-down the LMNA mutated gene and insertion of circRNA expressing WT protein
5. Specific targeting of the nanoparticles: PCM and TAT comodified liposome

Materials and costs

Timeline, materials and costs of production

- $\quad 3^{\text {rd }}$ generation Lentivectors: $€ 1.500$
- 5 x (WT) mice: € 500
- $\quad 10$ x H222P mice: $€ 2.365 /$ mouse
- Stabulation cost (each mouse): € 1.000 (x year)
- Western blot kit: € 200
- Western blot antibodies: € 300-400/antibody
- RT-PCR kit: € 500

ThermoFisher QIAGEN SCIENTIFIC

ALSTEM

- Cardiomyocytes cell culture: 500€
- Lipofectamine® RNAi max transfection reagent: € 964
- Molecular biology laboratory instruments: € 5.000
- GapmeR ASO: € 1.000

TOTAL COST: € 63.000
(without the salary cost of the researchers)

7.

References

References

Arimura, T., Helbling-Leclerc, A., Massart, C., Varnous, S., Niel, F., Lacène, E., Fromes, Y., Toussaint, M., Mura, A.M., Kelle, D.I., et al. (2005). Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum. Mol. Genet. 14, 155-169.

Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., and Kadener, S. (2014). CircRNA Biogenesis competes with Pre-mRNA splicing. Mol. Cell 56, 55-66.

Brayson, D., and Shanahan, C.M. (2017). Current insights into LMNA cardiomyopathies: Existing models and missing LINCs. Nucleus 8, 17-33.

Choi, J.C., Wu, W., Phillips, E., Plevin, R., Sera, F., Homma, S., and Worman, H.J. (2018). Elevated dual specificity protein phosphatase 4 in cardiomyopathy caused by lamin A / C gene mutation is primarily ERK1/2dependent and its depletion improves cardiac function and survival. Hum. Mol. Genet. 27, 2290-2305.

Escors, D., and Breckpot, K. (2011). UKPMC Funders Group Author Manuscript Lentiviral vectors in gene therapy : their current status and future potential. Arch. Immunol. Ther. Exp. (Warsz). 58, 107-119.

Frock, R.L., Chen, S.C., Da, D.F., Frett, E., Lau, C., Brown, C., Pak, D.N., Wang, Y., Muchir, A., Worman, H.J., et al. (2012). Cardiomyocyte-specific expression of lamin A improves cardiac function in Lmna-/-mice. PLoS
One 7.

Hershberger R.E., Morales A. (2016). LMNA-Related Dilated Cardiomyopathy. GeneReviews.

Huang, S., Yang, B., Chen, B.J., Bliim, N., Ueberham, U., Arendt, T., and Janitz, M. (2017). The emerging role of circular RNAs in transcriptome regulation. Genomics 109, 401-407.

Kang, S. mi, Yoon, M.H., and Park, B.J. (2018). Laminopathies; Mutations on single gene and various human genetic diseases. BMB Rep. 51, 327-337.

Kasaraneni, N., Chamoun-Emanuelli, A.M., Wright, G.A., and Chen, Z. (2018). A simple strategy for retargeting lentiviral vectors to desired cell types via a disulfide-bond-forming protein-peptide pair. Sci. Rep. 8.

Magner, D., Biala, E., Lisowiec-Wachnicka, J., and Kierzek, R. (2017). Influence of mismatched and bulged nucleotides on SNP-preferential RNase H cleavage of RNA-antisense gapmer heteroduplexes. Sci. Rep. 7, 1-16.

Meganck, R.M., Borchardt, E.K., Castellanos Rivera, R.M., Scalabrino, M.L., Wilusz, J.E., Marzluff, W.F., and Asokan, A. (2018). Tissue-Dependent Expression and Translation of Circular RNAs with Recombinant AAV Vectors In Vivo. Mol. Ther. - Nucleic Acids 13, 89-98.

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S.D., Gregersen, L.H., Munschauer, M., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333-338.

Milani, M., Annoni, A., Bartolaccini, S., Biffi, M., Russo, F., Di Tomaso, T., Raimondi, A., Lengler, J., Holmes, M.C., Scheiflinger, F., et al. (2017). Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy. EMBO Mol. Med. 9, e201708148.

Naldini, L., Trono, D., and Verma, I.M. (2016). Lentiviral vectors, two decades later. Science (80-.). 353, $1101-$ 1102.

Pamudurti, N.R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., Hanan, M., Wyler, E., PerezHernandez, D., Ramberger, E., et al. (2017). Translation of CircRNAs. Mol. Cell 66, 9-21.e7.

Pendergraff, H.M., Krishnamurthy, P.M., Debacker, A.J., Moazami, M.P., Sharma, V.K., Niitsoo, L., Yu, Y., Tan, Y.N., Haitchi, H.M., and Watts, J.K. (2017). Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA. Mol. Ther. - Nucleic Acids 8, 158-168.

Vigouroux, C., Guénantin, A., Vatier, C., Capel, E., Dour, C. Le, Afonso, P., Bidault, G., Béréziat, V., Lascols, O., Capeau, J., et al. (2018). Lipodystrophic syndromes due to LMNA mutations : recent developments on biomolecular aspects , pathophysiological hypotheses and therapeutic perspectives. 1034, 235-248.

Wang, X., Huang, H., Zhang, L., Bai, Y., and Chen, H. (2017). PCM and TAT co-modified liposome with improved myocardium delivery: In vitro and in vivo evaluations. Drug Deliv. 24, 339-345.

Wesselhoeft, R.A., Kowalski, P.S., and Anderson, D.G. (2018). Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9

Thank you!

Any questions?

[^0]: Figure adapted from MayoClinic

