Endogenous expression of ASO and
SiRNA for treating Hutchinson-Gilford
Progeria Syndrome (HGPS)

Frascolla Simone
Moresi Fabiana
Passeri lacopo Prof.ssa Isabella Saggio

Pioppini Carlotta A.A. 2018/2019



HGPS MUTATION

Wild-type
splicing
—] [ sobpasietion __ ——1 .}
exon 11 T et el exon 12
HGPS
splicing

Scaffidi P. et al., Plos Biology, 2005



Prelamin A
CaaX

l Farnesyltransferase /\)\/\)\Nk

S

|
CaaX

l RCE-1, Zmpste24

AAAAAA

s
|

C aay

jroun AANANA

§

COCH,

l Zmpste24

Mature lamin A

Vijay Swahari et al., Develop. Growth Differ., 2016

LAMIN vs PROGERIN MATURATION

50 aa deleted in HGPS

CaaX

}

l Farnesyltransferase /\/k/\/k/\/k

S

RS - -

i RCE-1, Zmpste24




RECENT THERAPY APPROACHES
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HOW? WHEN?
= Rescuing WT splice site * Assoonas HGPS is
diagnosed

= [nhibiting farnesylation of progerin (~2 years old)

= Reducing progerin levels



OUR APPROACH:

COMBINATORY THERAPY!
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THE REASON WHY

WT cell HGPS cell

® MEOX2

The GLI-1 gene promoter region is
Symbol LocusLink Change* Gene designation OCCUpied by MEOXZ, accompanied

Transcription by transcriptionally active RNA Pol |l
4223 Mesenchyme homeo box 2

FOXET 2304 13.2 Forkhead box E1

0AZ 23090 5.2 OLF-1/EBF associated zinc finger

BTEB1 687 39 Basic transc. element binding 1 M onz_dependent GLI_1
GATA6 2627 3.9 GATA binding protein 6

TOX 9760 3.6 Thymus high mobility group box gene eXpreSSiOn

STAT1 6772 3.3 Signal transducer activator transc. 1

Antonei B. Csoka et al., Aging Cell, 2004



OUR LENTIVECTOR
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IN VITRO EXPERIMENTS: planning

Lentiviral ViraPower
vector packaging mix

QOOO I

it

T fect .
it mn HGPS fibroblasts
Lipofectamine =
Lipotectarine 6 (ASO 365 and
Reagent rSIRNA)
293T or 1 —
203FT Cells art memisssissee ™ Concentrate
(optional)

Recombinant
virus

ghatSiat et




ARE OUR GENE CASSETTES EXPRESSED ONLY
IN HGPS CELLS?
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« gPCR: genome integration and
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HAS THE PROGERIN LEVEL
DECREASED?

Control HGPS
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IS THE NUCLEAR SHAPE RESCUED?

L

HGPS ASO365+siRNA

ASO365 siRNA

Immunohistochemistry:
Recover of cellular phenotype in double
treated HGPS cells



IN VIVO EXPERIMENTS: planning

ASO365LV sIRNALV

MOUSE MODEL.: Apoe
L MNAG609G/G609G

- Premature aging phenotype
- Medial VSMC loss
RS - Lipid retention,
- Adventitial fibrosis
‘ - Accelerated atherosclerosis

ANALYSIS



WHAT HAS HAPPENED /N VIVO?
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PITFALLS
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SOLUTIONS




MATERIALS AND COSTS PAS : SD
Lentiviral production: 3'’500€

g-PCR and PCR kits: 600€

WB kit: 2’500€

Immunofluorescence kit: 1°'500€
Immunohistochemistry kit: 1°250€

Mouse model (Jackson Labs): 3'373.50€
Animal Facilities: 30'000€

Cell Cultures: 1'500€

Imaging Techniques: 600€

Laboratory Instruments: 3'000€

Salary of One Researcher: 36’'000€/pp/yy
Lamin A/C, Progerin MC Antibodies: 1°100€
ASOs: 50€

siRNAs: 279€

Renilla-Firefly Luciferase Dual Assay Kit: 184€

L S1YVvd

FINAL COST: 230°000€ (for 2 years of research)

. - ThermoFisher \/’X The Jackson
’?SYNTHEGO % SCIENTIFIC Laboratory
S’GMA-ALDH’CH The world leader in serving science 'I.%:',.u!(:‘,‘:,]ff,;fi::‘,:\-:[:.'li.,;z.\\
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