

ARRB1-related vector therapy in T cell Acute Lymphoblastic Leukemia (T-ALL)

Gene Therapy 2020/21 Prof. Isabella Saggio Tutor Mattia La Torre Ines Ben Salem Kamila Konys Martina Mazzoni Remigiusz Walocha

BACKGROUND

ACUTE **LYMPHOBLASTIC LEUKEMIA:**

- Tumor characterized by malignant haematopoietic cells (lymphoblasts that couldn't complete the maturation into T-cells)

NOTCH1:

- Mutations occur on >60% of ALL - Most frequent mutation on NOTCH1: JME, HD, PEST

ARRB1:

- Negative regulator of NOTCH1
- Oncosuppressor
- It helps in *NOTCH1* ubiquitylation and consequently degradation

•

AIM OF THE PROJECT

Combined therapy "*Ex vivo* Gene Therapy + Chemotherapy" - Increase the efficiency

- Decrease the side effects due to other therapy like only chemotherapy and allogeneic bone marrow transplant

OBJECTIVES

1. Increase the ARRB1 expression in T-ALL patients in order to degrade mut-Notch1

2. Repopulate patients blood with lymphoblasts that can complete their maturation

STRATEGIES

- 1. Treating patients' lymphoblasts with Baculoviral vector
- 2. Lymphoblasts-treated reinjection into leukemia patients' blood

TOOLS

BACULOVIRAL VECTOR

- Low immunogenicity
- Non-pathogenic
- Non-replicating

CELL LINE

- Sf9 cells
- Jurkat Cells

ANIMAL MODEL

- NOD/SCID mice

Recombinant Baculovirus expression cassette

EXPERIMENTAL PLAN – In vitro

All pictures are adapted from Shu et al. Cancer Research 2020

EXPERIMENTAL PLAN: *Ex vivo* gene therapy

4. Flow cytometry, CCK-8 and Morphological analysis

EXPERIMENTAL PLAN: Chemotherapy

In the meanwhile, T-ALL mice are treated with a specific T-ALL chemotherapeutic drug: Nelarabine

EXPERIMENTAL PLAN:

MATERIALS AND METHODS

VECTORS AND MODELS

- Viral vectors: Baculovirus vectors containing ARRB1 gene with its promoter and Luciferase in order to check if vectors is entired into T-ALL; control vector with Luciferase to evaluate the efficiency of the therapy
- T-ALL cells taken from leukemia patients (patients have to sign informed consent)
- Humanized xenograft models: immunodeficiency mice NOD/SCID with T-ALL cells taken by leukemia patients
- Humanized WT NOD/SCID mice: immunodeficiency mice with T-cells taken from healthy patients (patients have to sign informed consent)

METHODS EX VIVO

- Luciferase fluorescence assay to check the successful infections of the cells by the BEVS
- Western blot is used to highlight the amount of ARRB1 protein into T-ALL cells before and after the baculoviral vectors treatment
- **RNA-seq** to analyse the transcriptome variations and underline the oncosuppressor activity of ARRB1 protein
- RT-PCR to evaluate different expression of treated and T-ALL cells measuring mRNA level in the cells; to check degradation of mut-NOTCH1 receptors
- Flow cytometry analysis to identify the presence of any cancerous cells before mice injection
- Co-immunoprecipitation to demonstrate
 the interaction between ARRB1 protein and
 NOTCH1 receptor

PROJECT BUDGET

VIRUS VECTOR PRODUCTION: €1.843,02 / year

- Vector containing ARRB1 and luciferase
- Vector containing Luciferase
- Plasmid DNA Preparation
- Bacmid Generation
- Bacmid DNA Preparation
- Baculovirus packaging

TEST: €16.146,66 / year

- Luciferase
- Western Blot
- RNA Seq
- Q-PCR

- RT-PCR
- Co-Immunoprecipitaion
 - CCK8
- Nelarabine

CELL LINE: €595 / year

• Jurkat Cells

ANIMAL MODEL: €1.968 / year

• 20 NOD/SCID mice

SALARIES: €122.121 / year

- 2 post-DOC
- 2-3 PhD

Total: €142.673,68 / year

PITFALLS and **SOLUTIONS**

Object	Limitations	Improvements
Baculovirus vector	Fragility of Budded Virus	Recombinant baculovirus Construction with a hexahistidine (His6) tag displayed on the viral envelope, which enables virus purification by a simple immobilized metal affinity chromatography (IMAC)
	Inactivation by Serum Complement	Using an <i>ex vivo</i> therapy to avoid the serum complement
Gene Target	Incapacity of Recognition between <i>ARRB1</i> and Pest domain of <i>Notch1</i> due to Pest mutation	More understanding of the Pest Sequence and correction of mutation using Crispr- Cas

CONCLUSIONS

We proved that using *ARRB1*-related Baculoviral vectors increase the *NOTCH1* degradation in the humanized xenograft mice without side effects. Furthermore, analyzing the transcriptome in the T-ALL cells treated, we noticed that genes expression has changed, providing that Notch1 may not activate other oncogenes, such as TAL-1/HES1/HES2, and it may not prevent the lymphocytes maturation.

FUTURE PERSPECTIVES

This therapy could be applied directly to leukemia patients since as proved, by previous experiments, that gene expression has been changed by *NOTCH1* non-degradation in human T-ALL cells (compared to WT T cells). It suggests that increasing the *ARRB1* expression in humans might restore WT conditions.

References

- 1. Invitrogen life technologies Instruction Manual 'Guide to Baculovirus Expression Vector Systems (BEVS) and Insect Cell Culture Techniques', Invitrogen Corporation
- 2. 'Baculovirus Vectors for Gene Therapy' Yu-Chen Hu, Adv Virus Res. 2006; 68: 287–320. Published online 2006 Sep 22. doi: 10.1016/S0065-3527(06)68008-1
- 3. 'The genetics and mechanisms of T cell acute lymphoblastic leukaemia' Laura Bervel, Adolfo Ferrando, Nature J., V.16, 2016
- 4. 'ARRB1-promoted NOTCH1 degradation is suppressed by oncomiR miR-223 in T cell acute lymphoblastic leukemia' Yi Shu,Yi Wang, et., Cancer Res. 2020 March 01; 80(5): 988–998. doi:10.1158/0008-5472.CAN-19-1471.
- 5. 'Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia' V. Kumar, R. Palermo, et., Nature J., Leukemia (2014) 28, 2324–2335
- 6. 'Baculovirus as a Tool for Gene Delivery and Gene Therapy' Chikako Ono, Toru Okamoto, et., Viruses 2018, 10, 510; doi:10.3390/v10090510
- 7. 'Activating Notch1 mutations in mouse models of T-ALL' Jennifer O'Neil, Jennifer Calvo, et., BLOOD, 15 JANUARY 2006, VOLUME 107, NUMBER 2
- 8. 'The role and mechanism of β-arrestins in cancer invasion and metastasis (Review)', Qing Song, Qing Ji and Qi Li, INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 41: 631-639, 2018, DOI: 10.3892/ijmm.2017.3288
- 9. 'Advances in the Genetics and Therapy of Acute Lymphoblastic Leukemia' Sabina Chiaretti, et., 2016 ASCO EDUCATIONAL BOOK, American Society of Clinical Oncology
- 10. 'Notch signaling: switching an oncogene to a tumor suppressor' Camille Lobry, BLOOD, 17 APRIL 2014 x VOLUME 123, NUMBER 16
- 11. "Alfa-Arrestins new players in Notch and GPCR signaling pathways in mammals" Loredana Puca, Christel Brou. Journal of Cell Science (2014) 127, 1359– 1367.
- 12. 'Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation,' Wei Guo, Joseph L. Lasky, Chun-Ju Chang, Sherly Mosessian, Xiaoman Lewis, Yun Xiao, Jennifer E. Yeh, James Y. Chen, M. Luisa Iruela-Arispe, Marileila Varella-Garcia, and Hong Wu, Nature 453 (7194) 529 533 22/05/2008
- 13. "T-cell acute lymphoblastic leukemia as a consequence of thymus autonomy" Luna Ballesteros-Arias, Joana G. Silva, Rafael A. Paiva, Belén Carbonetto, Pedro Faisca and Vera C. Martines. J immunol 2019; 202: 1137-1144.
- 14. 'Approval Summary: Nelarabine for the Treatment of T-Cell Lymphoblastic Leukemia/Lymphoma' Martin H. Cohen, John R. Johnson, Tristan Massie, et al. Clin Cancer Res 2006;12:5329-5335.

THANK YOU for your attention!

