

Primary Myelofibrosis

Gene Therapy on MPL gene via CRISPR CjCas9: a possible treatment against PMF

Gene Therapy Prof.ssa I. Saggio, Dr.ssa M. La Torre, Dr.ssa R. Burla Academic Year 2022/2023

M. Hushi, M. Maio, C. Perini

PMF: BACKGROUND

AIM OF THE PROJECT

Ex vivo therapy to treat Primary Myelofibrosis through the correction of MPL gene sequence with the system CjCas9-sgRNA.

EXPERIMENTAL PLAN in vitro:

AAV6+RNP

+PVA

AAV6+

RNP

QPCR (Adapted from Miyagawa et al. 2008 and Created by Biorender)

WT (control +

20

PCR cycles

15

HSC PMF

30

25

HSC PMF

DMP

35

40

1

0,8

0,4

0,2-

0

WТ

PMF

NGS (target sequence) (From Wu et al. 2014)

5

10

EXPERIMENTAL PLAN in vivo

Fig. 2 Ň

CONCLUSIONS

The correction of MPL mutation will restore WT in order to activate TPO-R only in the presence of TPO

In vivo: the post-treatment biopsy shows a significant reduction in the deposition of reticulin and collagen fibers from the engineered mice

PITFALLS

Limitated packaging capacity

Off target activity could negatively affect the experiment

Unstable integration of vector for AAV

SOLUTIONS

Using fragmented AAV dual vector system

CNV evaluation/more specific sgRNA

Use of lentivirus but random integrations can occures

MATERIALS AND COSTS (~18 months of research)

Materials	Costs	
Topi NOG-EXL (hGM-CSF/hIL-3 NOG), MALEs 4 to 10- (Taconic)	€344,10 x 5	
Flp-In™-293 Cell Line (Thermo Fisher Scientific)	€2.575,00 x 1mL	
Expi293™ Expression Medium (Thermo Fisher Scientific)	€373 x 1L	
Western Blot Detection Kit (Elabscience)	€200	
StemPro™-34 SFM (1X) (Thermo Fisher Scientific)	€448,00 x 550mL	
Puromycin (InvivoGen)	€381,00 x 500 mg	
Human Hematopoietic Stem Cell Expansion Cytokine Package (Peprotech)	€1,650.00 x 1 pack	
prAAV6 (Packgene)	€1744	
Packaging plasmid AAV rep cap (biolabs)	€600	
Vector plasmid AAV U6 sgRNA Cjcas9 (Addgene)	€3000	
Helper plasmid (Agilent)	€1850	
Control mouse (The Jackson Laboratory)	€35 x 1 ca	
RT-qPCR kit and equipments (Thermo Fisher Scientific)	€1500	
PCR- kit (Thermo Fisher Scientific)	€2000 ca	
Mice stabulation	€10.000	
ACSL1 Polyclonal Antibody (Thermo Fisher Scientific) + cell sorting (ISS)	€428 x 0.1 mL + €768 (€64/hour)	
Disposable plastic (Thermo Fisher scientific)	€5000 (1 year)	Cost per ye
Research team	€150.000 (1 year)	€184.272

REFERENCES

• A. Rongvaux, T. Willinger, J. Martinek, T. Strowig, S. V. Gearty, L. L. Teichmann, Y. Saito, F Marches, S. Halene, A. K. Palucka, M. G. Manz and R. A. Flavella, *Development and function of human innate immune cells in a humanized mouse model*, Nat Biotechnol. 2014 Apr; 32(4): 364–372

• A. F. Meier, C. Fraefel and M. Seyffert, The Interplay between Adeno-Associated Virus and Its Helper Viruses, Viruses 2020, 12, 662; doi:10.3390/v12060662

• S. Chatterjee, V. Sivanandam and K. Kai-Min Wong Jr., Adeno-Associated Virus and Hematopoietic Stem Cells: The Potential of Adeno-Associated Virus Hematopoietic Stem Cells in Genetic Medicines, Hum Gene Ther. May 2020; 31(9-10): 542–552

• R. Baik, S. K. Wyman, S. Kabir, J. E. Corn (2021), Genome editing to model and reverse a prevalent mutation associated with myeloproliferative neoplasms, PLOS ONE 16(3): e0247858

• T. Selçuk Akpınar, V. Sabri Hançer, M. Nalçacı e R. Diz-Küçükkaya, MPL W515L/K Mutations in Chronic Myeloproliferative Neoplasms, Turk J Haematol. 2013 Mar; 30(1): 8–12

• R.Chaligné, C. James, C.Tonetti, R. Besancenot, J. P. Le Couédic, F. Fava, F. Mazurier, I. Godin, K. Maloum, F. Larbret, Y. Lécluse, W. Vainchenker, S. Giraudier, Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis, Blood (2007) 110 (10): 3735–3743

• A. Tefferi, *Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management*, Am J Hematol. 2021 Jan;96(1):145-162

• R. Chaligné, C. Tonetti, R. Besancenot, L. Roy, C. Marty, P. Mossuz, J-J Kiladjian, G. Socié, D. Bordessoule, M-C Le Bousse-Kerdilès, W. Vainchenker, S. Giraudier, New mutations of MPL in primitive myelofibrosis: only the MPL W515 mutations promote a G1/S-phase transition, Leukemia. 2008 Aug;22(8):1557-66

• M. Bove, P. Refoni, La citometria a flusso, https://www.gruppobios.it/wp-content/uploads/2017/05/LA-CITOMETRIA-A-FLUSSO.pdf

• L. Arranz, The Hematology of Tomorrow Is Here—Preclinical Models Are Not: Cell Therapy for Hematological Malignancies, Cancers (Basel). 2022 Feb; 14(3): 580

• S. A. Mian, F. Anjos-Afonso and D. Bonnet1, Advances in Human Immune System Mouse Models for Studying Human Hematopoiesis and Cancer Immunotherapy, Front Immunol. 2020; 11: 619236

• R.Nakagawa ,S.Ishiguro ,S.Okazaki ,H.Mori ,M. Tanaka ,H. Aburatani ,Y.Nozomu, H.Nishimasu, O. Nureki, Engineered Campylobacter jejuni Cas9 variant with enhanced activity and broader targeting range, Commun Biol 5, 211 (2022)

• E. Kim, T.Koo, P.S. Wook, D. Kim, K. Kim, H.Y. Cho, D.W Song, K.J. Lee, M.H. Jung, S.Kim, J.H. Kim, J.H. Kim, J.S Kim, *In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni*, Nat Commun. 2017 Feb 21;8:14500