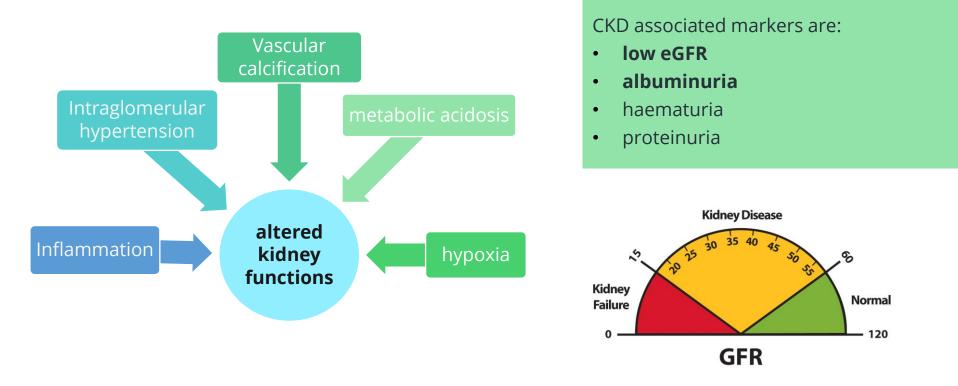
Upregulation of SIRT1 as a therapeutic approach for Chronic Kidney Disease

Federica D'Annunzio Pierpaolo Cantisani Armieti Babaiedarzi Carla Basarte

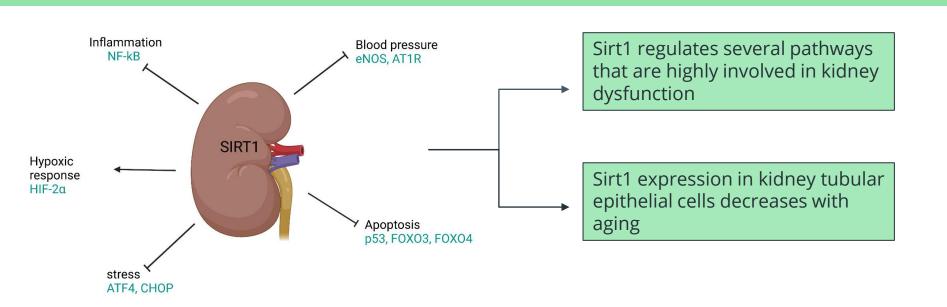
Supervisors: Prof. Isabella Saggio Prof. Romina Burla Prof. Mattia La Torre

Background


Chronic kidney disease (CKD) is a condition characterized by a gradual loss of kidney function over time.

10%	adults worldwide affected by CKD
2M	deaths each year
5th	leading cause of death globally by 2040

Aging disease


Fatal outcomes: kidney failure or cardiovascular disease

? How does CKD affect the kidney

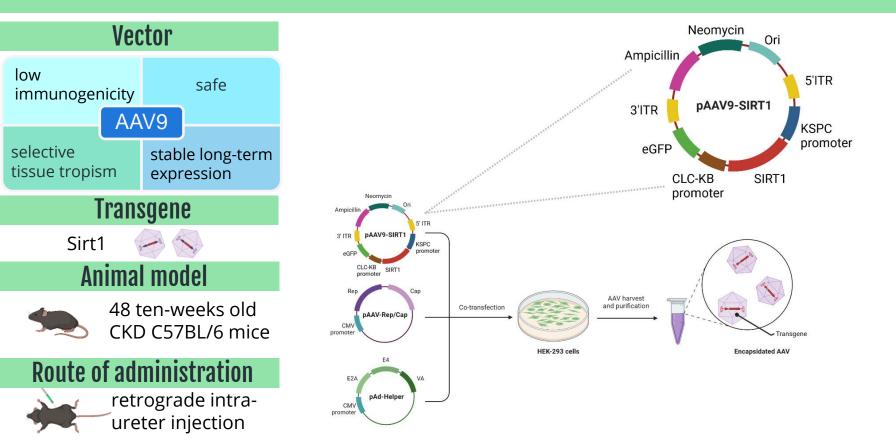
Sirtuin 1 is a nuclear nicotinamide adenine dinucleotide (NAD)⁺-dependent enzyme with deacetylase and mono-ADP-ribosyltransferase activity.

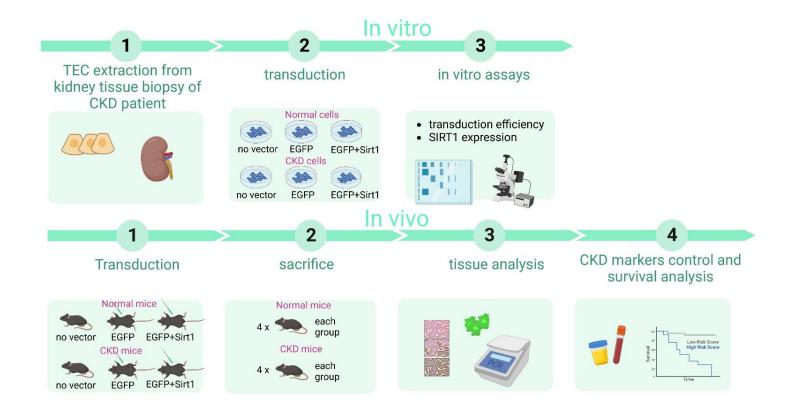
Aim of the project

WHAT?

The overexpression of SIRT1 will reduce the progression of CKD partially restoring the normal functions of the affected kidneys, alleviating symptoms.

WHERE? Tubular epithelial cells (TECs).


WHY? SIRT1 is an optimal target due to its relevance in most of CKD associated molecular pathways.



HOW?

Adeno-associated viral vector 9 (AAV9) expressing SIRT1 transgene.

Experimental plan

Results: In vitro

1. Transduction efficiency

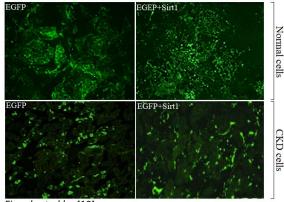
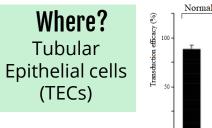
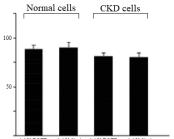
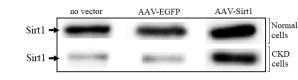
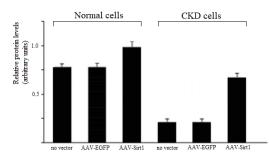
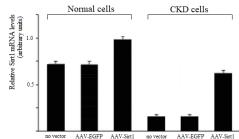




Fig adapted by [10]

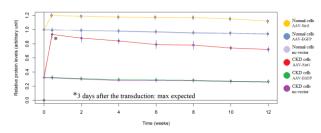




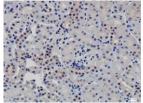
AAV-EGFP AAV-Sirt1 AAV-EGFP AAV-Sirt1

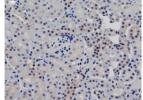

2. Sirt1 expression

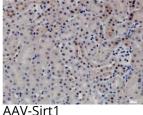
a. Protein levels



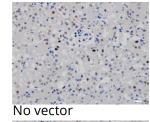
b. mRNA levels

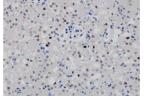

c. Expression over time

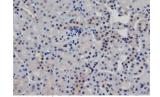

Results: In vivo


1. Immunohistochemistry

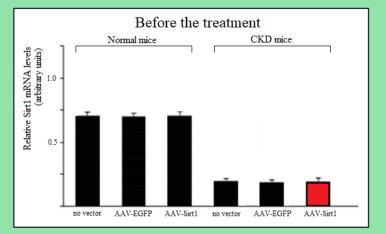
Normal

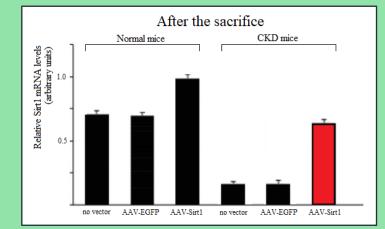


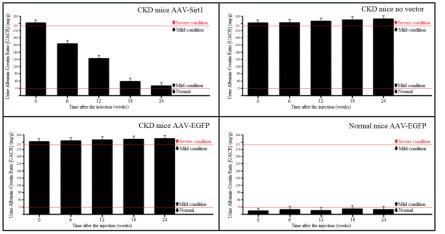




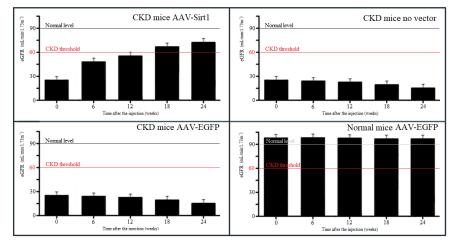
CKD

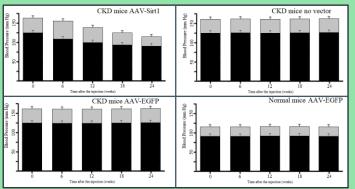


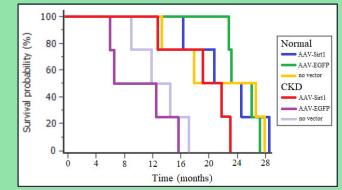



AAV-Sirt Fig adapted by [11]

2. qRT-PCR




3. Albuminuria control


4. eGFR control

5. Blood pressure measurement

6. Survival analysis

Conclusions

What has been found

Our results show that the overexpression of Sirt1 in TECs has positive effects on CKD, stopping its progression and partially restoring kidneys normal functions.

So...

Therefore upregulation of Sirt1 can be considered as a new effective, safe and promising therapy approach for Chronic Kidney Disease.

Pitfalls and solutions

1 Inefficiency of purified AAV due to loss of the transgene during cell division

Many copies of the transgene DNA in each TEC through a higher number of vectors

2 Translatability between pre-clinical models and human patients

The therapy has to be tested on humans in clinical trials

3 Overexpression of Sirt1 could activate new pathways via neomorphic effects

Phenotypic control and experiments to assess new putative molecular pathways

Materials and Costs

- Western Blot kit
- qRT-PCR kit
- Animal facilities
- AAV packaging plasmids x 2
- Immunohistochemistry x 24 samples
- Albuminuria analyzer
- SIRT1 antibodies (300 μL)
- Helper plasmid x2
- C57BL/6 mice (10 weeks old) x 24
- CKD C57BL/6 mice (10 weeks old) x 24
- Vector plasmid AAV9 (EGFP, EGFP+SIRT1) x2
- CODA blood pressure analyzer
- Salaries 1 PhD (20.500 €) + 1 Post-Doc (26.500 €)
- Blood analysis for eGFR x 130

820€ 1.424€ 24.000€ 3.600€ 8.400€ 380€ 640€ 954€ 710€ 1.056€ 5.900€ 5.215€ 94.000€ 2.600

Thanks for your attention!

References

[1] K. Kalantar-Zadeh, T. H Jafar, D. Nitsch, B. L Neuen, V. Perkovic, «Chronic kidney disease», The Lancet, Vol. 398, Issue 10302, 2021: 786-802.
[2] D. E. Wesson, J. M. Buysse, D. A. Bushinsky, «Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease», J. of the American Society of Nefrology, Mar 2020, 31 (3): 469-482.

[3] M. Morigi, L. Perico and A. Benigni, «Sirtuins in Renal Health and Disease», J. of the American Society of Nefrology Vol. 29, Issue 7 July 2018: 1799–1809.

[4] K. A. Nath, «The role of Sirt1 in renal rejuvenation and resistance to stress», March 24, 2010 J Clin Invest. 2010;120(4): 1026-1028.

[5] Shu Wakino, Kazuhiro Hasegawa, Hiroshi Itoh, **«Sirtuin and metabolic kidney disease»,** Kidney International, Vol. 88, Issue 4, 2015, Pag. 691-698, ISSN 0085-2538.

[6] Bahri, F., Khaksari, M., Movahedinia, S., Shafiei, B., Rajizadeh, M. Nazari-Robati, «Improving SIRT1 by trehalose supplementation reduces oxidative stress, inflammation, and histopathological scores in the kidney of aged rats», Journal of Food Biochemistry, 45, e13931.

[7] Yan J., Wang J., He J. C., Zhong Y., «Sirtuin 1 in Chronic Kidney Disease and Therapeutic Potential of Targeting Sirtuin 1», Frontiers in Endocrinology 13, 2022, ISSN 1664-2392.

[8] Chung DC, Fogelgren B, Park KM, Heidenberg J, Zuo X, Huang L, Bennett J, Lipschutz JH, **«Adeno-Associated Virus-Mediated Gene Transfer** to Renal Tubule Cells via a Retrograde Ureteral Approach», Nephron Extra. 2011 Jan;1(1):217-23.

[9] Asico LD, Cuevas S, Ma X, Jose PA, Armando I, Konkalmatt PR. **«Nephron segment-specific gene expression using AAV vectors»**. Biochem Biophys Res Commun. 2018 Feb 26;497(1):19-24.

[10] Picconi JL, Muff-Luett MA, Wu D, Bunchman E, Schaefer F, Brophy PD. «Kidney-specific expression of GFP by in-utero delivery of pseudotyped adeno-associated virus 9». Mol Ther Methods Clin Dev. 2014 May 7;1:14014.

[11] S. Han, F. Lin, Y. Ruan, S. Zhao, R. Yuan, J. Ning, K. Jiang, J. Xie, H. Li, C. Li, T. Rao, W. Yu, Y. Xia, X. Zhou, F. Cheng,

«miR-132-3p promotes the cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells by targeting SIRT1 via the NF-кВ pathway», International Immunopharmacology, Vol. 99, 2021,108022, ISSN 1567-5769.

[12] J. Wei, J. Zhang, L. Wang, B. Jake Cha, S. Jiang, and R. Liu, **«A new low-nephron CKD model with hypertension, progressive decline of renal function, and enhanced inflammation in C57BL/6 mice»,** Am. J. of Physiology-Renal Physiology 2018 314:5, F1008-F1019.

[13] Z. Mohammed-Ali, G. L. Cruz, C. Lu, R. E. Carlisle, K. E. Werner, K. Ask, J. G. Dickhout, **«Development of a Model of Chronic Kidney Disease** in the C57BL/6 Mouse with Properties of Progressive Human CKD», BioMed Res. International, vol. 2015, Article ID 172302, 10 pag.

[14] Ryu, DR, Yu, MR, Kong, KH, et al., **«Sirt1-hypoxia-inducible factor-1**α **interaction is a key mediator of tubulointerstitial damage in the aged kidney»**, Aging Cell. 2019; 18:e12904.

[15] Y. Jung, J. Lee, A. Lee, K. Kang, S. Lee, S. Park, S. Lee, M. Han, D. Kim, W. Kim, «SIRT1 overexpression decreases cisplatin-induced acetylation of NF-KB p65 subunit and cytotoxicity in renal proximal tubule cells», Biochemical and Biophysical Research Communications, Vol. 419, Issue 2,2012, Pag. 206-210, ISSN 0006-291X.

[16] D. Z I Cherney, C. C J Dekkers, S. J Barbour, D. Cattran, A.I Halim, et al., Hiddo J L Heerspink, **«Effects of the SGLT2 inhibitor dapagliflozin on** proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial», The Lancet Diabetes & Endocrinology, Vol. 8, Issue 7, 2020, Pag. 582-593,ISSN 2213-8587.