

SAPIENZA UNIVERSITÀ DI ROMA

Bartolucci Camilla, Lupo Anna, Patriarca Emanuele, Puleo Giuseppe, Terzulli Sara Maria

NEUROFERINOPATHY

GENE THERAPY FOR THE SILENCING OF THE EXPRESSION OF THE FTL498INSTC GENE IN MICE MODELS WITH IRON ACCUMULATION IN THE STRIATUM AND MOTOR CORTEX

BACKGROUND

AIMS OF THE PROJECT

- Using short hairpin RNA (shRNA) inserted in AAV-PHP.eB engineered, to silence mutated FTL, especially in striatum and cortex.
- Combination of pharmacological and genetic approach with DFP, an iron chelator, in order to reduce iron concentration both in neurons and at systemic level.

EXPERIMENTAL PLAN

IN VITRO

AAV-PHP.EB-FTL498INSTC-SHRNA

IN VITRO EXPERIMENT

3 groups SH-SY5Y expressing FTL498InsTC:

- Control group (AAV-PHP.eB-FTL498InsTC-shRNA scramble)
- 2) AAV-PHP.eB-FTL498InsTC-shRNA
- 3) AAV-PHP.eB-FTL498InsTC-shRNA + DFP

IN VIVO EXPERIMENT – 8 MONTH OLD TRANSGENIC MICE

INVITRO EXPERIMENT

Ferritin analysis

SOD analysis

EXPECTED RESULTS IN VIVO – 8 MONTHS OLD MICE

- Group I (n=8): AAV-PHP.eB-FTL498InsTC-shRNA+ DFP at 8 months.
- Group 2 (n=8): AAV-PHP.eB-shRNA scramble+ DFP at 8 months.
- Group 3 (n=8): AAV-PHP.eB-shRNA scramble only at 8 months.

IN VIVO EXPERIMENT – 8VS 12 MONTH OLD TRANSGENIC MICE

EXPECTED RESULTS IN VIVO – 8 VS 12 MONTHS OLD MICE

- Group I (n=8): AAV-PHP.eB-FTL498InsTC-shRNA+ DFP at 8 months
- Group 2 (n=8): AAV-PHP.eB-FTL498InsTC-shRNA+ DFP at 12 months

OUR CONCLUSIONS

FUTURE PERSPECTIVES

- Gene therapy shows improvements in the level of cytoplasmatic iron and ferritin inclusion bodies.
- Combine drug treatment with DFP and gene therapy allows to reduce neurodegeneration and the appearance of symptoms, especially if treatment is started at a young age.

PITFALLS

- Evaluate the **correct dosage** for treatment with **DFP** in a human gene therapy.
- NF is caused by more than **10 different mutations** on the FTL gene.

- Screening on target progeny of NF patients.
- AAV-PHP.eBshRNA+ DFP **before 30 years.**
- Annual controls.

SOLUTIONS

- Analysis on an heterologus population to evaluate the correct dosage.
- Evaluate the **exact mutation** in the patient for a specific treatment

BUDGETS

In vitro	VIRAL VECTOR : € 1.020,86 SH-SY5Y FTL498InsTC: €972,75	
	IRON DEXTRAN : 100 ml 477 €	€2.470
In vivo	C57BL/6J-tg MOUSE: €1.549 (€ 30,98 × 50) VIRALVECTOR = €11.538 (3x € 3.846) DAB: € 48,20 (1g) hFTL (Ab-LF03): €399 (150uL). TO-PRO: €550 (1mL). ROTAROD : € 398	€14.482
Lab expenses	 RTD-A: €61 334 RESEARCH FELLOW: €33.333 PHD STUDENT : €50.667 (2 emp) STATIONERY: €5.000 	€150.334

TOTAL: € 167.286

2 years

REFERENCES

- Garringer HJ, Irimia JM, Li W, Goodwin CB, Richine B, Acton A, Chan RJ, Peacock M, Muhoberac BB, Ghetti B, Vidal R. Effect of Systemic Iron Overload and a Chelation Therapy in a Mouse Model of the Neurodegenerative Disease Hereditary Ferritinopathy. PLoS One. 2016 Aug 30;11(8):e0161341. doi: 10.1371/journal.pone.0161341.
 PMID: 27574973; PMCID: PMC5004847.
- Maccarinelli F, Pagani A, Cozzi A, Codazzi F, Di Giacomo G, Capoccia S, Rapino S, Finazzi D, Politi LS, Cirulli F, Giorgio M, Cremona O, Grohovaz F, Levi S. A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits. Neurobiol Dis. 2015 Sep;81:119-33. doi: 10.1016/j.nbd.2014.10.023. Epub 2014 Nov 4. PMID: 25447222; PMCID: PMC4642750.
- Cozzi A, Rovelli E, Frizzale G, Campanella A, Amendola M, Arosio P, Levi S. Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiol Dis. 2010 Jan;37(1):77-85. doi: 10.1016/j.nbd.2009.090.09. Epub 2009 Sep 23. PMID: 19781644.
- Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, Sánchez-Guardado L, Lois C, Mazmanian SK, Deverman BE, Gradinaru V. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017 Aug;20(8):1172-1179. doi: 10.1038/nn.4593. Epub 2017 Jun 26. PMID: 28671695; PMCID: PMC5529245.
- Lewis JE, Brameld JM, Hill P, Barrett P, Ebling FJ, Jethwa PH. The use of a viral 2A sequence for the simultaneous over-expression of both the vgf gene and enhanced green fluorescent protein (eGFP) in vitro and in vivo. J Neurosci Methods. 2015 Dec 30;256:22-9. doi: 10.1016/j.jneumeth.2015.08.013. Epub 2015 Aug 20. PMID: 26300182; PMCID: PMC4659456.
- Roemhild K, von Maltzahn F, Weiskirchen R, Knüchel R, von Stillfried S, Lammers T. Iron metabolism: pathophysiology and pharmacology. Trends Pharmacol Sci. 2021 Aug;42(8):640-656. doi: 10.1016/j.tips.2021.05.001. Epub 2021 Jun 2. PMID: 34090703; PMCID: PMC7611894.
- Keogh MJ, Jonas P, Coulthard A, Chinnery PF, Burn J. Neuroferritinopathy: a new inborn error of iron metabolism. Neurogenetics. 2012 Feb;13(1):93-6. doi: 10.1007/s10048-011-0310-9. Epub 2012 Jan 26. PMID: 22278127; PMCID: PMC4038507.